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Abstract—The extensive use of smartphones and wearable
devices has facilitated many useful applications. For example,
with Global Positioning System (GPS)-equipped smart and wear-
able devices, many applications can gather, process, and share
rich metadata, such as geolocation, trajectories, elevation, and
time. For example, fitness applications, such as Runkeeper and
Strava, utilize information for activity tracking, and have recently
witnessed a boom in popularity. Those fitness tracker applications
have their own web platforms, and allow users to share activities
on such platforms, or even with other social network platforms.
To preserve privacy of users while allowing sharing, several of
those platforms may allow users to disclose partial information,
such as the elevation profile for an activity, which supposedly
would not leak the location of the users. In this work, and as a
cautionary tale, we create a proof of concept where we examine
the extent to which elevation profiles can be used to predict the
location of users. To tackle this problem, we devise three plausible
threat settings under which the city or borough of the targets
can be predicted. Those threat settings define the amount of
information available to the adversary to launch the prediction
attacks. Establishing that simple features of elevation profiles,
e.g., spectral features, are insufficient, we devise both natural
language processing (NLP)-inspired text-like representation and
computer vision-inspired image-like representation of elevation
profiles, and we convert the problem at hand into text and image
classification problem. We use both traditional machine learning-
and deep learning-based techniques, and achieve a prediction
success rate ranging from 59.59% to 95.83%. The findings are
alarming, and highlight that sharing elevation information may
have significant location privacy risks.

I. INTRODUCTION

From smartphones to wearable devices, various types of
Internet of Things (IoT) devices are equipped with Global
Positioning System (GPS), accelerometers and gyroscopes to
allow applications to function or to present a better user experi-
ence by making use of geodata, such as location and elevation
information. Specifically, fitness applications which run on
smartphones and smartwatches use these systems to collect
spatial, temporal, and activity-specific information to analyze,
summarize and visualize users’ activities. By analyzing each
activity, many of those applications even deliver personalized
motivations and challenges for users to meet their goals.
Using social media support of these applications for sharing
updates about users’ activities, including training routes and
elevation profiles for the routes taken for the activity (e.g.,
walking, running, climbing, cycling), users can have positive
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Fig. 1. Survey results for understanding users behavior: (a) starting point
statistics, (b) end point statistics, and (c) not sharing location information
implies privacy. While 90% of the 60 participants indicated their start of
activity is either home, school, or work, an overwhelming 98% of the
participant indicated those to be the end point of their activities.

behavioural changes through a more active lifestyle motivated
by competitions with friends and acquaintances [1].

Despite the broad set of advantages geodata has, geodata
usage and uncontrolled sharing can pose a significant privacy
risk which can be exploited in multiple attacks, including
stalking [2] and cybercasing [3]. For example, with the large
amount of geo-tagged data, including text, images, and videos,
cybercasing allows a significant attack vector to criminals
and maliciously motivated individuals. Geo-tagged photos that
are frequently posted on image sharing websites, such as
Flickr, or second-hand sale websites, such as craigslist, may
put owners of those images at risk. For example, geo-tagged
images posted on sales websites may reveal the location of
the advertised product, leading to trespassing or even theft.

While geodata recorded by fitness applications is indeed
important and valuable for the operation of those applications,
it also can be used for launching attacks on users by breaching
their privacy, since sensitive information of users such as home
or workplace location can be easily inferred from such data.
Even worse, a large number of users, when sharing such
information, would be unaware of the ramifications of sharing,
and the potential risk of inferring such contextual information
(home, work location, etc.) from such shared location data. To
support this argument, we conducted an online survey with 60
participants who regularly use fitness applications outdoors,
with the results of the survey summarized in Figure 1. The
survey results reveal that 51% of the participants start their
training from their homes, 36% start from their school and
3% start from their workplace, and 76% of the participants
finish their training at their homes. Moreover, for the same set
of users, 42% of those users have indicated that not sharing



location information implies privacy protection, while 30% of
the respondent where uncertain, and 28% were certain that not
sharing would not necessarily mean their privacy is protected.
This kind of mixed responses highlight the gap between reality
and expectations of privacy when sharing location information
online and call for further investigation.

Although it is possible not to share the location trajectory
by hiding the activity map in the fitness applications, users
still want to share elevation profile or certain statistics of
the activity to show the roughness, technicality, and difficulty
of the routes they took as a measure of their workout. For
example, up until recently, users have been demanding those
fitness applications to allow for fine-grained and customized
access control by allowing them to share, for example, the
elevation profile of an activity while masking the map that
highlights the actual trajectory, which is deemed of high
privacy value to them [4]–[7]. In the same survey conducted
earlier, we asked our 60 subjects if “while sharing an outdoor
workout record, do you think hiding the map and sharing only
the statistics of your training (such as speed and elevation
changes) is enough for protecting your privacy?”. The results
were overwhelmingly positive, with 25 of them indicating
“yes”, 18 indicating “maybe” (together accounting for more
than 71%), while only 17 indicating “no”.

However, is sharing the elevation profile of an activity
enough to maintain the privacy of the users? In this paper, we
argue that an approximate location, extracted from contexts
of activities, and at different levels of location granularity,
could still be revealed from elevation profile information. We
examine this problem at length, and develop approaches that
can be used to accurately associate an elevation profile with
contextual information, such as the location.
Contributions. In this paper, we contribute the following:

� We translated the problem into text classification and image
classification problems by encoding the elevation signals as
strings and visualizing the elevation signals as images to
employ the common approaches for solving image and text
classification problems,

� We investigated the possible attack surface for the problem
by introducing three different threat models, which we later
used to evaluate the success of our approaches by simulating
our methods considering each threat model,

� We proved that location information can be predicted
from elevation profile using different machine/deep learn-
ing methods with accuracy in range 59.59% - 95.83% at
different resolutions as our results showed.

II. THREAT MODELS & APPROACH OVERVIEW

We outline the potential threat models under which this
study is conducted. We describe three models under which the
location privacy is breached only from associated elevation
profiles. We then review our approach, including a pipeline
that consists of data collection, preprocessing, feature extrac-
tion, and multi-class classification for location identification
through elevation profiles. We briefly discuss the phases of

our pipeline, each of which is explained in details in the
Implementation Details section.

We note that the following threat models are only hypo-
thetical: no attacks were actually launched on any users. As
mentioned earlier, this study in its entirety is motivated by the
aforementioned demands of users to have more flexibility over
sharing partial data, such as elevation profiles, and examines
the ramifications of such sharing in a hypothetical setting. We
note, however, that those settings are also plausible if such
sharing is enabled.

A. Threat Models

Our study utilizes three threat models: TM-1, TM-2, and
TM-3, which we outline below with their justifications. The
adversarial capabilities in TM-1 are greater than in TM-2 and
TM-3, making it more a restrictive (powerful) model.
1 TM-1. In TM-1, we assume an adversary with records
of the workout history of a target user, and the goal of the
adversary is to identify the last workout location of the target
user from the shared elevation profiles. TM-1 is justified by
multiple plausible scenarios in practice. For example, such
an adversary might have been a previous social network
connection of the target user that was later blocked. In
such a scenario, the adversary may have previous workout
records of the target from which the adversary may attempt to
de-anonymize the target’s activities. Another example might
include group activities, in which two individuals (i.e., the
adversary and target) may have shared the same route at some
point. In either case, by knowing the target’s history, the
main goal of the adversary in this model is to identify recent
whereabouts only from publicly shared elevation profiles in
workout summaries, thus breaching the target’s privacy.
2 TM-2. In TM-2, we assume an adversary with access
to limited information such as the city in which the target
lives. Such information is easily accessible from public profile
summaries, athlinks.com, public records, etc. The adversary’s
goal in TM-2 is to find out which region or part of a given
city the target’s activities are associated with. The TM-2 use
scenario may include a targeted user sharing private activities,
in which the route is hidden while the elevation profile is
shown. The adversary, knowing the city where the target lives,
would want to identify the region (e.g., borough in the city)
associated with the user’s activity.
3 TM-3. In TM-3, we assume an adversary trying to identify
the target user’s city using only publicly shared elevation
profiles. We assume, however, the adversary has the abil-
ity to profile the elevation of cities, with information that
is easily obtained from public sources (e.g., Google Maps,
OpenStreetMap). The use scenario of TM-3 may be used as a
stepping stone towards launching the attack scenario in TM-2
upon narrowing down the search space to a city.

B. Approach Overview

In this subsection, we give a brief overview of our pipeline,
which consists of the data collection, preprocessing, feature
extraction and classification as illustrated in Figure 2.
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Fig. 2. The end-to-end pipeline of the approach.

Data Collection. We collected three datasets with varying
and rich characteristics, namely 1) user-specific activity data
collected from an athlete, 2) mined training route segments
grouped at city-level, and 3) mined training route segments
grouped at borough-level. For the user-specific dataset, we
collected physical activity records of athletes and converted
those activities to our intermediate format, the GPS Exchange
Format (GPX). Then, we parsed the GPX files and manually
labeled them according to the latitude and longitude infor-
mation included within each file. For the second dataset, we
mined training route segments from a popular fitness tracking
website by specifying the location boundaries, i.e., the class
label of the mined data, and augmented each segment with the
corresponding elevation profiles obtained from Google Maps
Elevation API. Finally, the borough-level dataset is constructed
in a similar manner as in the city-level dataset.
Preprocessing. We use both natural language processing and
image processing techniques for extracting features from the
elevation profiles in order to associate them with a given label.
To this end, the preprocessing phase is two parts: text-like
and image-like representations. For text-like representation, we
discretized the elevation signals and computed the minimum
required word size. We then created a mapping between each
unique discrete value and a string. By mapping the string
correspondents to the unique discrete values, we encoded the
elevation profiles in text. Finally, we form a vocabulary from
the text sequences of each dataset using the n-grams.

To obtain image-like representation, we converted the el-
evation profiles to a fixed-sized line graph where the x-axis
stands for time and y-axis stands for the elevation values. The
lines in the graphs are also colored to represent the elevation
interval in which the elevation profiles range.
Feature Extraction. The classification algorithm operates on
high quality and discriminative features, obtained from the
representations of elevation profiles. For feature extraction,
we utilize Natural Language Processing (NLP) and computer
vision approaches. To employ NLP approaches, using previ-
ously obtained vocabulary, we represent each elevation profile
as a feature vector based on the frequency of the vocabu-
lary in the text-like representation (bag-of-words vector). To
employ computer vision approaches, we utilize Convolutional
Neural Network (CNN) over image-like representations. The
optimal features of an image-like representation are efficiently
extracted by the convolutional and pooling layers in the
Convolutional Neural Network architecture.
Multi-class Classification. We use various machine learning
and deep learning models for classification including Support

Vector Machine (SVM) and Random Forest Classification
(RFC) as machine learning approaches, and Multi-Layer Per-
ceptron (MLP) and Convolutional Neural Network (CNN) as
deep learning approaches.

III. IMPLEMENTATION DETAILS

The implementation details of data collection, preprocess-
ing, feature extraction and multi-class classification are ad-
dressed in the following subsections.

A. Data Collection

In this study, we compiled three datasets: the user-specific
dataset, the city-level dataset, and the borough-level dataset.
The user-specific dataset is retrieved from a voluntary ath-
lete who frequently records activities. It offers a dense and
thorough coverage for regions frequented by the user; those
regions are used as class labels. The city- and borough-level
datasets are created from scratch by collecting location tra-
jectories that are created and frequented by the athletes. Both
city-level and borough-level datasets provide sparse coverage
of cities and boroughs.

1) User-Specific Dataset: For the user-specific dataset, we
collected activity data including each activity’s location trajec-
tory and the corresponding elevation profile from a voluntary
athlete who records activities frequently. First, the location
trajectories included in the user-specific dataset are converted
to GPX format to avoid confusion caused by different formats
and settings. Then, to label the samples, the maximum and
minimum coordinates of each location trajectory are fetched.
Each sample location trajectory is encapsulated with a tight
rectangle whose top right (North East) and bottom left (South
West) corners are computed from the maximum and the
minimum coordinates of the trajectory as illustrated in Figure
3. To classify the samples, each rectangle encapsulating the
trajectory is compared with the previously created regions. If
the Euclidean distance between the center of the rectangle
and the center of the existing region does not exceed a
predetermined threshold, the rectangle and its corresponding
sample are labeled with a unique identity of the region. If
there is no region that includes the trajectory, a new region
is created. The final sample size distribution of user-specific
dataset is shown in Table I.

The user-specific dataset is prone to having similar location
trajectory portions across its samples since the user may
frequent the same set of places in his/her everyday activities,
such as the location trace they follow while leaving/arriving
home, or their favorite routes. Therefore, we calculated the
average overlap ratio of the routes included in the user-specific
dataset by comparing each sample with the other samples with
the same class label. For each sample pair comparison, the
overlap ratio is calculated as the intersection over union of the
tight rectangles encapsulating the sample routes. The average
overlap ratio of the user-specific dataset is calculated as 35%.

2) City-Level Dataset: For the city-level dataset,
we mined publicly available training route segments
in a popular fitness tracking application using its

3




